
Formalizing Information Flow
in a Haskell Hypervisor

Rebekah Leslie
Portland State University

Levent Erk̈ok and Flemming Andersen
Intel Corporation

Abstract— Separation kernels are the holy grail of secure sys-
tems, remaining elusive despite years of research into their design,
implementation, and analysis. Though separation kernel research
has achieved many successes, the disconnect between information
flow theory and system implementation is a significant barrier to
further progress. In this paper, we show how a particular branch
of information flow theory, noninterference, can be utilized to
formulate correctness and security properties of a microkernel-
style hypervisor. Thus, we not only provide a first step towards
a formally verified separation kernel, but also reduce the gap
between information flow theory and operating systems practice.

I. I NTRODUCTION

Noninterference provides a concise and general way to
formalize the information flow relationships between compo-
nents of a system. A noninterference security policy specifies
which components, or domains, may notinterfere with each
other, where a domainu interferes with a domainv if v
can observe the effects ofu’s execution [1]. The generality
of such policies makes them useful for capturing a wide
variety of security requirements, including separation. A key
benefit of noninterference is that there are existing frameworks
for reasoning about systems governed by a noninterference
policy [1], [2], thus reducing the barriers to verifying such
systems formally.

Our interest in noninterference stems from our efforts to
develop a hypervisor with formally verified separation between
user-level processes. The design of our hypervisor is similar
to secure microkernel APIs such as seL4 [3] and L4sec [4],
but we use the term hypervisor to emphasize our intent
to employ our system as a platform for secure, separate
execution. Such an execution environment is an essential part
of many high assurance systems, and is increasingly important
in light of recent hardware developments, such as multi-
core platforms based on IntelR© Virtualization Technology and
Intel R© Trusted Execution Technology [5].

Following the approach of the Programatica [6] and seL4 [3]
projects, we are writing a model of our hypervisor, called
HHV, in the functional language Haskell [7]. The mathematical
semantics and strong type system of Haskell make our model
easier to reason about than a low-level implementation. By
combining the use of a high-level functional language with
the application of an existing reasoning framework, proving

Levent Erk̈ok is now at Galois Connections, Inc.

separation for HHV becomes a more tenable goal than with
other techniques.

In this paper, we concentrate on the formulation of correct-
ness and security properties of the communication mechanisms
in HHV, because these are the source of all legal information
flow in our design. We formally characterize the information
flow relationships induced by these communication primitives
using a notation based on higher-order logic, similar to the
P-logic programming logic for Haskell [8]. More importantly,
we develop specification patterns for expressing correctness
properties in terms of noninterference concepts. In defining
these patterns, we take advantage of higher-order functions
to extract common aspects of noninterference-style properties.
For instance, we abstract over the kernel state and kernel
operations so that we can instantiate the patterns in different
contexts and formulate assertions about particular operations
in a generic way. Hence, our work provides a link between the
theory of noninterference and the actual practice of building
secure microkernels.

We organize the remainder of the paper as follows. Section
II describes the foundational concepts of HHV and outlines the
communication mechanisms. Section III presents the system
model used by our hypervisor. Section IV introduces the
noninterference specification patterns that are the basis of our
property formulations. Section V defines the desired informa-
tion flow behavior of HHV, both as an informal specification
and as a set of formal properties. We discuss related work in
Section VI and present our conclusions in Section VII.

II. COMMUNICATION IN HHV

The fundamental abstractions in HHV areprotection do-
mains—the basic unit of resource protection—andexecution
contexts—the unit of execution. A protection domain (PD)
corresponds to an address space in other systems; an execution
context (EC) corresponds to a thread. HHV is a migrating
thread system [9], so there is a single execution context per
processor that moves between protection domains with the
logical flow of control.

Each EC contains a representation of the processor state—
such as the general purpose registers and the instruction
pointer—for the running domain. We store this hardware
context using a record type, calledContext , which contains a
field for each hardware register. When a domain is not running,
HHV preserves the processor state in a region of memory
called the save/restore area (SRA).



Protection domains communicate through uni-directional
channels calledportals. A portal traversal causes a context
switch from the initiator of the traversal (the source domain) to
the target of the traversal (the destination domain), potentially
transferring a message from the source to the destination in
the process. There are two modes of communication in HHV:
direct data transfer via registers and indirect data transfer
through shared resources, such as memory pages.1 In this
paper, we focus on the information flow properties of direct
data transfer, although we have also formally characterized the
aspects of portal traversal that deal with resource sharing.

HHV uses a dynamically configurable set of message regis-
ters. This approach results in an extremely flexible communi-
cation mechanism, and also allows us to overcome the security
issues induced by the use of a migrating-thread model [9],
[10]. Specifically, we must guarantee that a portal traversal
does not leak information that the source domain wishes to
keep private and that a portal traversal does not overwrite data
that the destination wishes to preserve. By allowing both the
source and destination domains to control which registers are
part of a message, we enable the domains to protect their state
against unwanted observation and modification. To this end,
we introduce the concept ofportal masks, which are fine-
grained guards used by the source and destination domains to
control information flow.

A traversal potentially affects every register in the execution
context, so a mask (represented by the typeMask) contains a
flag for every register in the hardware context. There are two
masks involved in each portal traversal: the source domain uses
a transfer maskto control which registers are sent during a
traversal and the destination uses apass maskto control which
registers are modified. HHV only copies a register value from
the source to the destination if both masks permit the transfer.

We define a context switch primitive that encapsulates
the direct data transfer aspect of portal traversal. The exact
behavior of a switch depends on the portal mask settings, but
the fundamental algorithm consists of three basic steps.

1) Filter the running EC to remove any data that the source
does not wish to send to the destination, as specified in
the transfer mask, and save this data to the source SRA.

2) Perform a context switch to the destination.
3) Load the saved state from the destination’s SRA into the

EC, as dictated by the pass mask settings.

We implement these steps using several state-manipulation
functions, the type signatures for which are shown in Figure 1:
saveContext writes the registers that are not part of the
message to the source SRA,computeTransfer builds a new
context containing only the message registers,loadContext

restores the state of the destination from its SRA, and
computePass combines the restored registers with those sent
by the source domain. The top-level context switch operation,
switch , weaves together these state-manipulation functions to
achieve the data transfer and preservation behavior specified

1Portal traversal is the only mechanism for sharing resources, hence we do
not consider shared resources to be a separate source of information flow.

by the portal masks.

saveContext :: Mask → Context → PDID → Kernel ()
computeTransfer :: Mask → Context → Context
loadContext :: Portal → SRA→ Context
computePass :: Mask → Context → Context → Context

Fig. 1. Functions for preserving domain state and performing a message
transfer. These functions are used by the context switch operation to imple-
ment the dynamic message-transfer semantics specified by the portal masks.

The implementation ofswitch depends on the kernel state,
information about the source and destination domains, and the
portal configuration (which includes the mask settings). These
dependencies are reflected in the type signature ofswitch :

switch :: PDID → PDID → Portal → Kernel ()

The parameters are the source domain (of typePDID), the
destination domain (of typePDID), and the portal configuration
(of type Portal ). The operation runs in a monad called
Kernel , which encapsulates the kernel state. We will examine
the details of this monad in the next section; for now it is only
important to note thatKernel contains a state component for
the running EC.

The first step of switch is to perform the source-
side state-manipulations; this involves callingsaveContext

to store the registers that are not being sent and calling
computeTransfer to clear the value of those registers in
the running EC. The variableec corresponds to the running
EC (read from the kernel state by theget function).

switch src dst port
= do ec ← get

saveContext (transfer port) ec src
let ec’ = computeTransfer (transfer port) ec

At this point, ec’ contains only the data that the source
wants to send to the destination, so we perform a context
switch to the destination by setting the active domain to
be the destination. Next, we perform the destination-side
state-manipulations. We invokeloadContext to restore the
registers that the destination does not wish to receive from the
source. The final register values are obtained by merging the
sent context with the restored context usingcomputePass .

setActiveDomain dst
dstSRA ← getSRA dst
let rc = loadContext port dstSRA
set (computePass (pass port) ec’ rc)

We omit the details hidden by the sub-computations of
switch , because they are not essential for formalizing the
behavior of HHV. The important idea is that each of these
steps should respect the intended information-flow semantics
of portal traversal, which we define in Section V.

III. HHV S YSTEM MODEL

The implementation of portal traversal—and other HHV
operations—requires access to the running execution context
and to the state of the protection domains. The domain state



resides in memory, so we introduce a simple virtual memory
model consisting of a memory datatype,VirtMem , and basic
operations on this type (such as read and write). In addition
to the user state stored in the EC and memory, HHV keeps
track of certain internal state, represented by the typeHHV,
that the kernel operations potentially modify. We incorporate
these state components into our model using a layered monadic
approach that is similar to the techniques previously applied
in the construction of modular interpreters [11], [12].

Using monad transformers, we construct a monad withEC,
VirtMem , and HHV state components (ST s m adds a state
component of types to monadm, resulting in a new monad).
Every computation that runs in this monad will share a single
EC, memory, and HHV structure; the operations available to
computations in this monad include reading and writing to
each of the state components.

type Kernel = ST EC (ST VirtMem (ST HHV Id))

We often reference values for the three state components of
the Kernel monad together, so we introduce a new type,KS,
to represent the kernel state.

data KS = KS { ec :: EC, mem :: VirtMem, hhv :: HHV }

Running aKernel computation with an initial value for the
kernel state allows us to examine the result of the computation
and the new state that the computation produces. We are
primarily concerned with the state effects of HHV operations,
so we define a run function that returns the state produced by
executing a kernel computation (throwing away the result of
the computation).

runKs :: Kernel a → KS → KS
runKs k s

= let (((_, c), m), h) = unId (k ‘runST‘ (ec s)
‘runST‘ (mem s)
‘runST‘ (hhv s))

in KS c m h

The library functionrunST peels off a single layer from our
monad transformer stack. Thus, we use three applications of
runST in the definition of runKs , one for each state com-
ponent of theKernel monad. We will userunKs frequently
in our property formulations to compare the impact that two
distinct monadic computations have on the state.

IV. N ONINTERFERENCE

The properties we wish to formulate of the context switch
operation all deal with the absence of information flow be-
tween domains. Noninterference [1] is a mathematical formal-
ism for expressing exactly this kind of property. Noninterfer-
ence captures the idea that a given operation is not allowed to
change the state of a particular domain. For example, “switch

does not change the state of any domain except the source and
destination” can be thought of as a noninterference property.

By employing noninterference to formalize our system, we
can take advantage of the existing mathematical frameworks
for reasoning about noninterference security policies [1], [2],
[13], [14]. Noninterference frameworks establish a corre-
spondence between properties of individual operations, called

unwinding conditions, and the information flow that occurs
during the execution of a system. In this section, we define
two generic noninterference-style properties, which we will
later instantiate to capture specific information flow properties
of communication in HHV. These properties are analogous to
unwinding conditions, so noninterference frameworks provide
us with confidence that the properties will also hold for
sequences of HHV operations.

The property NoStateEffect(see Figure 2) captures the
notion that some operation,k , does not modify the kernel
state. However, we do not wish to say that the kernel state
does not change at all, rather, we want to express that a
certain component of the state does not change (such as a
particular domain’s SRA or the page-table memory). For this
reason,NoStateEffecttakes a function argument,extract ,
whose role is to extract a portion of the kernel state. This
extraction function is polymorphic in its return type and can
perform arbitrary (pure) computation. We say that an operation
hasNoStateEffectif the extraction function produces the same
result in the initial state and in the state that results from
running the operation.

Note that we do not expectNoStateEffectto be a gen-
eral property of HHV, rather, we will useNoStateEffectto
describe the effects of particular operations on particular
components of the kernel state. As a simple example, consider
the setActiveDomain operation, which changes the running
domain. Performing this operation should not change the
instruction pointer stored in the running EC (among other
things). In this case, the extraction function simply projects
the eip field from the EC component of the state:(λs →
eip (ec s)).2 Having determined the extraction function, we
can formalize the assertion as:∀s, dom. NoStateEffect(s, λs→
eip (ec s), setActiveDomain dom).

The function readPage is a more realistic example of
the kind of extraction function we will use in our property
formulations. Given a domain and a virtual-page number,vi ,
readPage looks up the corresponding frame number in the
virtual address space of that domain.

readPage :: PDID → VirtIdx → KS → Page
readPage did vi s

= let m = mem s
(pi,_) = pageTables m did vi

in lookupPage m pi

We define extraction functions for reading page-table entries
(readPageTable ) and for reading the save/restore area of a
domain (readSRA ) in a similar fashion.

Clearly, the polymorphic nature ofNoStateEffectmakes it
a powerful tool for expressing a range of noninterference
properties. We will useNoStateEffectto write many of the
information flow properties of portal traversal, but in some
cases we need something even more general. In particular,
for successful portal traversals, we need to express that a
computation may change the state, but only in a controlled

2In Haskell syntax,λx → E defines an anonymous function, which will
evaluate the expressionE with the argumentx.



NoStateEffect (s :: KS, extract :: KS → a, k :: Kernel b) =
extract (runKs k s) === extract s

ControlledStateEffect (s :: KS, extract :: KS → a, k1 :: Kernel b, k2 :: Kernel b) =
extract (runKs k1 s) === extract (runKs k2 s)

Fig. 2. Patterns for formulating noninterference properties of monadic Haskell programs.NoStateEffectdescribes kernel operations that do not modify a
particular region of the kernel state.ControlledStateEffectdescribes kernel operations that may modify the kernel state, but only in a constrained manner. The
first argument to both patterns corresponds to the kernel state. The argument calledextract is a function that extracts a particular region of the kernel state
from one or more of the kernel state components (such as the page-table memory). In the case ofNoStateEffect, k is the kernel operation of interest. For
ControlledStateEffect, k1 is the kernel operation andk2 is the reference computation. Note that the relation=== captures the denotational equivalence of
two terms, rather than structural equality.

way.ControlledStateEffectis a generalization ofNoStateEffect
that captures this idea.

The definition of ControlledStateEffect(see Figure 2) is
very similar toNoStateEffect, except that it compares the state
produced by a given operation to the state produced by a
reference computation. The intended use of this property is
that the reference computation will perform only the allowed
effect. Thus, if the resulting states are compatible, then the
effects of the first computation must be limited to those
effects that are explicitly allowed. The state-dependent nature
of the reference computation makesControlledStateEffectan
instance of a dynamic noninterference property [2].

V. PROPERTIES OFPORTAL TRAVERSAL

Portal masks provide fine-grained control over the data
transfer that occurs during a portal traversal. The correct
implementation of this control mechanism is the fundamental
property ofswitch ; there should not be any information flow
that is not expressly permitted by the portal masks. We divide
this high-level requirement into three categories:

• Destination State Preservation:The value of a field only
passes from the source domain to the destination domain
if both the transfer mask and the pass mask allow the
transfer. Only the source domain can leak information to
the destination.

• Source State Preservation:No information flows into
the source domain. The SRA of the source only changes
as specified by the transfer mask of the portal.

• Memory Preservation: Executing switch does not
modify the memory pages or the page-table of any
domain in the system. For every domain except the source
and destination, the SRA pages do not change.

We will formulate these properties using the noninterference
specification patterns defined in the previous section.

A. Destination state preservation

Portal masks are the principal mechanism afforded to do-
mains for protecting their state during a portal traversal. If
either the source or the destination wishes to protect a field,
then HHV must ensure that the value of that field in the source
EC does not leak to the destination EC. To formalize this
property, we need a mechanism for identifying protected fields
and a formal way to capture that a field value is not leaked. The
predicatenoLeakage (see Figure 3) determines if a particular

field is protected; it is true if either mask blocks the transfer
of that field.

We would like to useNoStateEffectto express the idea
that the execution ofswitch does not affect the value of
protected registers. Thus, we need to determine the value
that a register should have when no leakage occurs. The
function loadField performs this task, loading a single
field value from a given SRA.FieldNotLeaked, defined in
Figure 3, formalizes the desired register protection property by
instantiatingNoStateEffectwith loadField as the extraction
function andswitch as the computation of interest.

The first argument toFieldNotLeakedis a function that
projects a field from the context of the running EC. The second
argument is the corresponding projection function for theMask

type (e.g.,bEip returns the mask value that corresponds to the
eip field of a context). ParameterizingFieldNotLeakedin this
way allows us to write a single property that can be instantiated
for each field of the context. Figure 3 shows an example of
one such property,EIPNotLeaked, which specifies that HHV
does not transfer the instruction pointer register unless both the
source and destination indicate that the transfer should occur.

The field-preservation properties capture information flow
into the destination through the EC, which is the only compo-
nent of the destination state that may legally change during
a traversal. We expect the remaining components of the
destination state—the saved context and non-SRA memory—
to be unaffected by the execution ofswitch . We define
DestSavedContextUnchangedto express that the saved context
does not change (Figure 3), we again useNoStateEffect. In
this case, the extraction function is simply the SRA-projection
function that returns the saved context (savedContext ). We
address the memory preservation properties in Section V-C.

B. Source state preservation

A portal traversal does not permit any information flow
into the source domain. However, the source state is not
entirely unaffected by the traversal, because HHV will po-
tentially save register values to the source SRA. In other
words, executingswitch modifies the source SRA in the
same way assaveContext . We useControlledStateEffectto
express this property, as shown in Figure 4;readSRA is the
extraction function,switch is the computation of interest, and
saveContext is the reference computation.



noLeakage :: Mask → Mask → (Mask → Bool) → Bool
noLeakage transfer pass p = not (p transfer && p pass)

FieldNotLeaked (f :: Context → a, p :: Mask → Bool, src :: PDID, dst :: PDID, port :: Portal) =
∀s. NoStateEffect (s, λs → loadField (pass port) f p (readSRA dst s), switch src dst port)

EIPNotLeaked =
∀src, dst, port. noLeakage (transfer port) (pass port) bEip ==⇒ FieldNotLeaked (eip, bEip, src, dst, port)

DestSavedContextUnchanged =
∀ s, src, dst, port. NoStateEffect (s, λs → savedContext (readSRA dst s), switch src dst port)

Fig. 3. Destination state preservation properties.EIPNotLeakedis an example of a field-preservation property built from the predicatenoLeakageand the
abstract propertyFieldNotLeaked. DestSavedContextUnchangedcaptures the property that a context switch does not change the destination’s SRA. We quantify
over the kernel state (s), the source and destination domains (src anddst), the portal being traversed (port).

NoFlowIntoSource =
∀ s, src, dst, port. ControlledStateEffect (s, readSRA src, switch src dst port,

saveContext (transfer port) (ec s) src)

Fig. 4. Source state preservation property: executing a context switch potentially modifies the saved context of the source domain, but all other components
of the source state are unchanged. The quantified variables have the same meaning as in Figure 3.

The page-table and non-SRA memory pages of the source
should also be preserved byswitch , as we shall see in the
next section.

C. Memory preservation

The only memory regions that a context switch will modify
are the source and destination SRAs. We capture this notion
using three properties: whenswitch executes, the page-table
of every domain remains the same, the mapped memory of
every domain remains the same, and the SRA memory of every
domain except the source and destination remains the same.
The definitions of these properties are presented in Figure 5.

Recall from Section IV thatreadPageTable projects
the page-table component of the kernel state. We use
NoStateEffectwith readPageTable as the extraction function
to express thatswitch does not modify the page-tables in the
propertyPageTablesUnchanged.

Similarly, readPage projects a specified memory page from
the kernel state. We quantify over all virtual-page numbers to
express that none of the memory pages visible to user-level
domains are affected by a context switch.

For the SRA memory pages, we again useNoStateEffect, but
in this case the extraction function isreadSRA . We quantify
over domain identifiers, but exclude the source and destination
because the SRA of these domains might in fact change.

VI. RELATED WORK

OS verification has a long history filled with mixed suc-
cesses, an overview of which is provided by Tuch, et al. [15].
More recent verification efforts can be divided into two
categories: attempts to verify low-level source code written in
C/C++ and attempts to verify functional language models/im-
plementations. The VFiasco [16] and L4Verified [17] projects
both pursue the former option in their effort to prove properties
of L4 [18] implementations. The results of these projects are

limited to proofs about sub-systems of L4, rather than top-
level separation properties, due to the inherent complexities
involved in reasoning about C and security issues in the L4
design. Furthermore, these projects do not employ a general
information flow framework, which we consider to be an
important contribution of our work.

The use of functional languages together with formal prop-
erty specifications is a relatively recent development, but there
is already a large body of work on the subject. Elphinstone,
et al. are using Haskell models in the the development of
seL4 [19], [20], a secure redesign of the L4 microkernel [18],
and are already making progress towards verifying proper-
ties of this model. They have translated their model into
Isabelle/HOL, thus guaranteeing termination, but have not yet
formalized any separation properties.

The Programatica project formally verified a virtual memory
model written in Haskell [21]. They have also specified an
axiomatic semantics for an implementation of a safe, Haskell
interface to hardware [22]. We view this work as highly com-
patible with ours because proving our separation properties
will depend on guarantees about the behavior of the underlying
hardware.

There is also existing work on the instantiation of noninter-
ference frameworks for concrete systems. In his foundational
noninterference paper [1], Rushby applied noninterference to a
simple access control mechanism. Subsequently, Schellhorn et
al. applied Rushby’s work to prove security properties of their
generic formal model of operating systems for multiapplicative
smart cards [23]. Von Oheimb used noninterference to analyze
the security of the Infineon SLE66 smart card processor [13].
The key difference between our work and these earlier efforts
is that the complexities of general-purpose operating systems
make them more difficult to integrate with a theoretical frame-
work. Also, the access control and smart card work did not



PageTablesUnchanged =
∀ s, src, dst, port, did, vi. NoStateEffect (s, readPageTable did vi, switch src dst port)

UserMemoryUnchanged =
∀ s, src, dst, port, did, vi. NoStateEffect (s, readPage did vi, switch src dst port)

SRAMemoryUnchanged =
∀ s, src, dst, port, did. (did /= src) && (did /= dst) ==⇒ NoStateEffect (s, readSRA did, switch src dst port)

Fig. 5. Properties describing the absence of information flow via memory during a context switch. As with the previous properties, we quantify over the
kernel state (s), the domains involved in the portal traversal (src and dst), and the portal being traversed (port). We introduce two new quantified variables:
did is the identifier of the domain whose memory we are interested in andvi is a particular page in that domain’s virtual address space.

utilize the notion of dynamic noninterference [2], which is
essential for reasoning about HHV.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we formalized the information flow behavior
of direct communication in a microkernel-style hypervisor
using property-specification patterns derived from general non-
interference frameworks. The development of these patterns
is a significant advance in the realm of operating system
verification because it illustrates how to apply information flow
theory to a practical system.

The next step is to port our model to a theorem proving
environment, such as Isabelle/HOL, and to prove the prop-
erties specified in this paper. We anticipate that the use of
Haskell will make this task easier because Haskell has a
well-defined semantics and there are established connections
between Haskell and Isabelle. We also plan to formalize the
information flow behavior of the remaining primitives of HHV
using the same techniques we applied to communication.

We based the correctness and security properties of our
hypervisor on a Haskell model, rather than a low-level imple-
mentation, so that we could focus on the conceptual elements
of our design. Our model is based on the same specification as
the actual C++ implementation, but we have yet to establish
a formal connection between the two. Ideally, we would like
to derive the model directly from the implementation or refine
the model into an implementation. However, our immediate
plans focus on the specification and verification of the critical
components using the model alone.

ACKNOWLEDGMENTS

Sebastian Scḧonberg made significant contributions to this
work by sharing his expertise in hypervisor design and im-
plementation. We would also like to thank Mark P. Jones and
Iavor S. Diatchki for their helpful suggestions regarding the
presentation of this paper. This work was done during the first
author’s internship at Intel Research Labs.

REFERENCES

[1] J. Rushby, “Noninterference, transitivity, and channel-control security
policies,” SRI International, Tech. Rep. CSL-92-02, December 1992.

[2] R. Leslie, “Dynamic intransitive noninterference,” inFirst IEEE Inter-
national Symposium on Secure Software Engineering, 2006.

[3] “seL4 web site,” http://www.ertos.nicta.com.au/research/sel4.
[4] B. Kauer, “L4.sec implementation: Kernel memory management,”

Diploma Thesis, TU Dresden, 2005.

[5] D. Grawrock,The Intel Safer Computing Initiative. Intel Press, 2006.
[6] “Programatica web site,” http://programatica.cs.pdx.edu, 2006.
[7] S. Peyton Jones, Ed.,Haskell 98 Language and Libraries, The Revised

Report. Cambridge University Press, 2003.
[8] W. L. Harrison and R. B. Kieburtz, “The logic of demand in Haskell,”

J. Funct. Program., vol. 15, no. 6, pp. 837–891, 2005.
[9] B. Ford and J. Lepreau, “Evolving Mach 3.0 to a migrating thread

model,” in Proceedings of the Winter 1994 USENIX Technical Con-
ference and Exhibition, 1994, pp. 97–114.

[10] J. S. Shapiro, “Vulnerabilities in synchronous IPC designs,” inProceed-
ings of the 2003 IEEE Symposium on Security and Privacy, May 2003,
pp. 251–262.

[11] M. P. Jones, “Functional programming with overloading and higher-
order polymorphism,” inAdvanced Functional Programming, 1st Int.
Spring School on Advanced Functional Programming Techniques-
Tutorial Text. London, UK: Springer-Verlag, 1995, pp. 97–136.

[12] S. Liang, P. Hudak, and M. Jones, “Monad transformers and modular
interpreters,” inPOPL ’95: Proc. 22nd ACM Symp. on Principles of
programming languages, 1995, pp. 333–343.

[13] D. von Oheimb, “Information flow control revisited: Noninfluence =
Noninterference + Nonleakage,” inComputer Security – ESORICS 2004,
ser. LNCS, vol. 3193. Springer, 2004, pp. 225–243.

[14] J. Goguen and J. Meseguer, “Security policies and security models,” in
IEEE Symposium on Security and Privacy, 1982, pp. 11–20.

[15] H. Tuch, G. Klein, and G. Heiser, “OS verification — now!” in
Proc. 10th Workshop on Hot Topics in Operating Systems (HotOS X),
M. Seltzer, Ed., 2005.

[16] M. Hohmuth, H. Tews, and S. G. Stephens, “Applying source-code veri-
fication to a microkernel – The VFiasco project,” Technische Universität
Dresden, Tech. Rep. TUD-FI02-03, March 2002.

[17] H. Tuch and G. Klein, “Verifying the L4 virtual memory subsystem,” in
Proc. NICTA Formal Methods Workshop on Operating Systems Verifi-
cation, G. Klein, Ed., NICTA Technical Report 0401005T-1. National
ICT Australia, 2004, pp. 73–97.

[18] L4ka Team,L4 eXperimental Kernel Reference Manual, January 2005.
[Online]. Available: http://l4hq.org/docs/manuals/l4-x2-20041209.pdf

[19] K. Elphinstone, G. Klein, and R. Kolanski, “Formalising a high-
performance microkernel,” inWorkshop on Verified Software: Theories,
Tools, and Experiments (VSTTE 06), ser. Microsoft Research Technical
Report MSR-TR-2006-117, R. Leino, Ed., Seattle, USA, 2006, pp. 1–7.

[20] P. Derrin, K. Elphinstone, G. Klein, D. Cock, and M. M. T. Chakravarty,
“Running the manual: an approach to high-assurance microkernel de-
velopment,” inHaskell ’06: Proceedings of the 2006 ACM SIGPLAN
workshop on Haskell. New York, NY, USA: ACM Press, 2006.

[21] M. P. Jones, “Bare Metal: A Programatica model of hardware,” inHigh
Confidence Software and Systems Conference, Baltimore, MD, March
2005.

[22] T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach, “A principled
approach to operating system construction in Haskell,” inICFP ’05:
Proceedings of the tenth ACM SIGPLAN international conference on
Functional programming. New York, NY, USA: ACM Press, 2005.

[23] G. Schellhorn, W. Reif, A. Schairer, P. A. Karger, V. Austel, and D. Toll,
“Verification of a formal security model for multiapplicative smart
cards,” inESORICS ’00: Proceedings of the 6th European Symposium on
Research in Computer Security. London, UK: Springer-Verlag, 2000,
pp. 17–36.


