Formalizing Information Flow
In a Haskell Hypervisor

Rebekah Leslie Levent Erlok and Flemming Andersen
Portland State University Intel Corporation

Abstract— Separation kernels are the holy grail of secure sys- separation for HHV becomes a more tenable goal than with
tems, remaining elusive despite years of research into their design, other techniques.

implementation, and analysis. Though separation kernel research |, his paper, we concentrate on the formulation of correct-
has achieved many successes, the disconnect between information ' - L .
flow theory and system implementation is a significant barrier to ness and security properties of the communication r_nechanlfsms
further progress. In this paper, we show how a particular branch in HHV, because these are the source of all legal information
of information flow theory, noninterference, can be utilized to flow in our design. We formally characterize the information
formulate correctness and security properties of a microkernel- flow relationships induced by these communication primitives
style hypervisor. Thus, we not only provide a first step towards iy 4 notation based on higher-order logic, similar to the
a formally verlfle_d separation kernel, but z_;tlso reduce the gap P-loi ina logic for Haskell 181, M . |
between information flow theory and operating systems practice. 0gic programming logic for Hasxe [8]. ore importantly,
we develop specification patterns for expressing correctness
properties in terms of noninterference concepts. In defining
|. INTRODUCTION these patterns, we take advantage of higher-order functions
to extract common aspects of noninterference-style properties.
Noninterference provides a concise and general way For instance, we abstract over the kernel state and kernel
formalize the information flow relationships between comp@perations so that we can instantiate the patterns in different
nents of a system. A noninterference security policy specifiesntexts and formulate assertions about particular operations
which components, or domains, may noterfere with each in a generic way. Hence, our work provides a link between the
other, where a domaim interferes with a domairv if v theory of noninterference and the actual practice of building
can observe the effects ofs execution [1]. The generality secure microkernels.
of such policies makes them useful for capturing a wide We organize the remainder of the paper as follows. Section
variety of security requirements, including separation. A kaydescribes the foundational concepts of HHV and outlines the
benefit of noninterference is that there are existing frameworgdmmunication mechanisms. Section Ill presents the system
for reasoning about systems governed by a noninterferennedel used by our hypervisor. Section IV introduces the
policy [1], [2], thus reducing the barriers to verifying suchoninterference specification patterns that are the basis of our
systems formally. property formulations. Section V defines the desired informa-
Our interest in noninterference stems from our efforts ton flow behavior of HHV, both as an informal specification
develop a hypervisor with formally verified separation betweeand as a set of formal properties. We discuss related work in
user-level processes. The design of our hypervisor is simi@ection VI and present our conclusions in Section VII.
to secure microkernel APIs such as sel4 [3] and L4sec [4],
but we use the term hypervisor to emphasize our intent
to employ our system as a platform for secure, separateéThe fundamental abstractions in HHV apeotection do-
execution. Such an execution environment is an essential pagins—the basic unit of resource protection—aexiecution
of many high assurance systems, and is increasingly importaohtexts—the unit of execution. A protection domain (PD)
in light of recent hardware developments, such as multerresponds to an address space in other systems; an execution
core platforms based on In@) Virtualization Technology and context (EC) corresponds to a thread. HHV is a migrating
Intel® Trusted Execution Technology [5]. thread system [9], so there is a single execution context per
Following the approach of the Programatica [6] and seL4 [Byocessor that moves between protection domains with the
projects, we are writing a model of our hypervisor, calletbgical flow of control.
HHYV, in the functional language Haskell [7]. The mathematical Each EC contains a representation of the processor state—
semantics and strong type system of Haskell make our modech as the general purpose registers and the instruction
easier to reason about than a low-level implementation. Bpinte—for the running domain. We store this hardware
combining the use of a high-level functional language witbontext using a record type, call@ntext , which contains a
the application of an existing reasoning framework, provirigeld for each hardware register. When a domain is not running,
HHV preserves the processor state in a region of memory
Levent Erkok is now at Galois Connections, Inc. called the save/restore area (SRA).

Il. COMMUNICATION IN HHV

Protection domains communicate through uni-directionlly the portal masks.
channels callegortals. A portal traversal causes a context

switch from the initiator of the traversal _(the source domain) 19 eContext - Mask . Context — PDID — Kemel ()
the target of the traversal (the destination domain), potentiaftynputeTransfer :: Mask — Context — Context
transferring a message from the source to the destinationoaaiContext = Portal — SRA — Context

the process. There are two modes of communication in HH§pmMputePass i Mask — Context — Context — Context

direct data transfer via registers and indirect data transfer

through shared resources, such as memory plagﬂsthis Fig. 1. Functions for preserving domain state and performing a message
. . . . transfer. These functions are used by the context switch operation to imple-

paper, we focus on the information flow properties Of_ dlreﬁgﬁent the dynamic message-transfer semantics specified by the portal masks.

data transfer, although we have also formally characterized the

aspects of portal trave_:rsal that gleal with resource sharing. _ The implementation ofwitch depends on the kernel state,
HHV uses a dynamically configurable set of message regjgtormation about the source and destination domains, and the
ters. This approach results in an extremely flexible commujotal configuration (which includes the mask settings). These

cation mechanism, and also allows us to overcome the secufipendencies are reflected in the type signaturaviéh
issues induced by the use of a migrating-thread model [9],
— PDID — Portal — Kemel ()

[10]. Specifically, we must guarantee that a portal traversaSMich = PDID

does not leak information that the source domain wishes the parameters are the source domain (of tpmeD), the
keep private and that a portal traversal does not overwrite dgstination domain (of typeDID), and the portal configuration
that the destination wishes to preserve. By aIIOWing both tl@@f type Portal) The Operation runs in a monad called
source and destination domains to control which registers &&mnel , which encapsulates the kernel state. We will examine
part of a message, we enable the domains to protect their siatedetails of this monad in the next section; for now it is only

against unwanted observation and modification. To this enghportant to note thakernel contains a state component for
we introduce the concept gfortal masks which are fine- the running EC.

grained guards used by the source and destination domains tphe first step ofswitch is to perform the source-

control information flow. o _side state-manipulations; this involves callisgveContext
A traversal potentially affects every register in the executiq@ store the registers that are not being sent and calling
context, so a mask (represented by the tyfaek) contains @ computeTransfer ~ to clear the value of those registers in

flag for every register in the hardware context. There are twe running EC. The variablec corresponds to the running
masks involved in each portal traversal: the source domain Us&S (read from the kernel state by thet function).

a transfer maskto control which registers are sent during a _ .
L . switch src dst port
traversal and the destination usesass masko control which — do ec < get
registers are modified. HHV only copies a register value from saveContext (ransfer port) ec src
the source to the destination if both masks permit the transfer. let e¢ = computeTransfer (ransfer porf) ec
We define a context switch primitive that encapsulate

the direct data transfer aspect of portal traversal. The ex tthIS point, ec’ - contains only the data that the source

senair o swtchdepends on the poralmask seings, 1 S92 e esivaten =0 e perorm @ ot
the fundamental algorithm consists of three basic steps. o y 9 o :
be the destination. Next, we perform the destination-side

1) Filter the running EC to remove any data that the SOUregyte_manipulations. We invokeadContext to restore the
does not wish to send to the destination, as specified iyisters that the destination does not wish to receive from the
the transfer mask, and save this data to the source SR rce. The final register values are obtained by merging the

2) Perform a context switch to the destination. ggnt context with the restored context usirgnputePass .
3) Load the saved state from the destination’s SRA into the

E i ;] setActiveDomain dst
. C, as dictated by the pa§s mask settings . . GSISRA < geSRA dst
We implement these steps using several state-manipulation |et ¢ = loadContext port dstSRA
functions, the type signatures for which are shown in Figure 1: set (computePass (pass por) ec rc)

saveContext ~ writes the registers that are not part of the
message to the source SRdmputeTransfer builds a new Vtvi Ongtectgssgitr?gs grlgdr?cr)]t z;ehr?tiaslufbo_ rcc;(r)r:ﬁ)nuatﬁ:i(r)]ns tr?(;
context containing only the message registizrsjContext EWIh(;vio,r of HHV. Thg important idea is that each of '?hese
restores the state of the destination from its SRA, an ’ P) . !
eps should respect the intended information-flow semantics

. . : S
P mbines the r red registers with th n . S .
computePass combines the restored registers with those se portal traversal, which we define in Section V.

by the source domain. The top-level context switch operatiocr)\,

switch , weaves together these state-manipulation functions to I1l. HHV SYSTEM MODEL
achieve the data transfer and preservation behavior specifieq_he implementation of portal traversal—and other HHV

Iportal traversal is the only mechanism for sharing resources, hence weQRFrations—requires access t(_) the runr_ung execution _ConteXt
not consider shared resources to be a separate source of information flov@and to the state of the protection domains. The domain state

resides in memory, so we introduce a simple virtual memonnwinding conditions, and the information flow that occurs
model consisting of a memory datatypéstMem , and basic during the execution of a system. In this section, we define
operations on this type (such as read and write). In additibmo generic noninterference-style properties, which we will
to the user state stored in the EC and memory, HHV keelager instantiate to capture specific information flow properties
track of certain internal state, represented by the typ®/ of communication in HHV. These properties are analogous to
that the kernel operations potentially modify. We incorporatenwinding conditions, so noninterference frameworks provide
these state components into our model using a layered monadicwith confidence that the properties will also hold for
approach that is similar to the techniques previously appliséquences of HHV operations.
in the construction of modular interpreters [11], [12]. The property NoStateEffect(see Figure 2) captures the
Using monad transformers, we construct a monad W@ notion that some operatiork, does not modify the kernel
VirtMem , and HHV state componentsST s m adds a state state. However, we do not wish to say that the kernel state
component of type to monadm resulting in a new monad). does not change at all, rather, we want to express that a
Every computation that runs in this monad will share a singbertain component of the state does not change (such as a
EC, memory, and HHV structure; the operations available particular domain's SRA or the page-table memory). For this
computations in this monad include reading and writing t@ason,NoStateEffectakes a function argumengxtract
each of the state components. whose role is to extract a portion of the kernel state. This
type Kemel = ST EC (ST VitMem (ST HHV Id) extraction function is polymorphic in its return type and can
perform arbitrary (pure) computation. We say that an operation

We often reference values for the three state componentsygkNostateEffedif the extraction function produces the same
the Kernel monad together, so we introduce a new 48, eqyit in the initial state and in the state that results from
to represent the kernel state. running the operation.

data KS = KS { ec : EC, mem : VitMem hhv :: HHV } Note that we do not expediloStateEffecto be a gen-
Running aKernel computation with an initial value for the eral property of HHV, rather, we will uséloStateEffecto

kernel state allows us to examine the result of the computatidfSCcribe the effects of particular operations on particular
and the new state that the computation produces. We SRinPonents of the kernel state. As a simple example, consider
primarily concerned with the state effects of HHV operationd)€ setActiveDomain operation, which changes the running
so we define a run function that returns the state produced $ynain. Performing this operation should not change the

executing a kernel computation (throwing away the result 8}_struction pc_)inter stored in the. running_ EC .(among c_)ther
the computation). things). In this case, the extraction function simply projects

) the eip field from the EC component of the statg:\s —
unks : Kemela — KS — KS eip (ec 9).2 Having determined the extraction function, we

Ks k .)
mn: let ((S(J 9 m), h — unid (k TunST (ec 9) can formalize thg assernqn ags, dom NoStateEffe¢s, As —
unST (mem s) eip (ec 9, setActiveDomain dojn
_ unST (hhv 9)) The functionreadPage is a more realistic example of
in KS ¢ mh the kind of extraction function we will use in our property

The library functionrunST peels off a single layer from our formulations. Given a domain and a virtual-page numter,
monad transformer stack. Thus, we use three applications'@fdPage looks up the corresponding frame number in the
runST in the definition ofrunks , one for each state com-Virtual address space of that domain.

ponent of thekerel monad. We will useunKs frequently readpage : PDID — Vitidk — KS — Page

in our property formulations to compare the impact that two readPage did vi s

distinct monadic computations have on the state. =letm =mems o
(pi.) = pageTables m did vi
IV. NONINTERFERENCE in lookupPage m pi

The properties we wish to formulate of the context sWitCye gefine extraction functions for reading page-table entries

operation all deal with the absence of information flow b&:.,pageTable) and for reading the save/restore area of a
tween domains. Noninterference [1] is a mathematical form omain (eadSRA) in a similar fashion

ism for expressing'exactly this 'kind of property. Noninterfer- Clearly, the polymorphic nature dfoStateEffectakes it

ence captures the idea th_at a given operation Is nOt_allowedatOpowerfuI tool for expressing a range of noninterference

ghange 'ihehstate ?;a pta;tlcuflar do(;nam._ For exa{rlﬁlméh properties. We will useNoStateEffecto write many of the
0€s not change the state of any domain except tn€ SOUrce 8§ ation flow properties of portal traversal, but in some

destination” can be thought of as a noninterference property. cos we need something even more general. In particular,

By employing nonmterferenc_:e.to formalize our system, Wi successtul portal traversals, we need to express that a
can take advantage of the existing mathematical framewor mputation may change the state, but only in a controlled
for reasoning about noninterference security policies [1], [2], '

[13], [14]. Noninterference _frame_wo_rk_s eStab“Sh_ & COITe-2|n Haskell syntax,\x — E defines an anonymous function, which will
spondence between properties of individual operations, callediuate the expressida with the argumenk.

NoStateEffect (s :: KS, extract :: KS — @, k i1 Kemel b) =

extract (unKs k s) — extract s
ControlledStateEffect (s :: KS, extract : KS — @, k1 - Kemel b, k2 :: Kemel b) =
extract (unks k1 s) = extract (funks k2 s)

Fig. 2. Patterns for formulating noninterference properties of monadic Haskell proghu8sateEffectlescribes kernel operations that do not modify a
particular region of the kernel stat€ontrolledStateEffeaiescribes kernel operations that may modify the kernel state, but only in a constrained manner. The
first argument to both patterns corresponds to the kernel state. The argumeniegatetlis a function that extracts a particular region of the kernel state
from one or more of the kernel state components (such as the page-table memory). In the MaStatdEffectk is the kernel operation of interest. For
ControlledStateEffeckl is the kernel operation ark is the reference computation. Note that the relatios== captures the denotational equivalence of

two terms, rather than structural equality.

way. ControlledStateEffeds a generalization dlloStateEffect field is protected; it is true if either mask blocks the transfer
that captures this idea. of that field.

The definition of ControlledStateEffec{see Figure 2) is We would like to useNoStateEffectto express the idea
very similar toNoStateEffegtexcept that it compares the statehat the execution ofwitch does not affect the value of
produced by a given operation to the state produced bypeotected registers. Thus, we need to determine the value
reference computation. The intended use of this propertytisat a register should have when no leakage occurs. The
that the reference computation will perform only the alloweflinction loadField performs this task, loading a single
effect. Thus, if the resulting states are compatible, then tfield value from a given SRAFieldNotLeaked defined in
effects of the first computation must be limited to thosEigure 3, formalizes the desired register protection property by
effects that are explicitly allowed. The state-dependent natungtantiatingNoStateEffecwith loadField as the extraction
of the reference computation mak€sntrolledStateEffecan function andswitch as the computation of interest.
instance of a dynamic noninterference property [2]. The first argument tdFieldNotLeakedis a function that
projects a field from the context of the running EC. The second
argument is the corresponding projection function forNtagk

e (e.g.bEip returns the mask value that corresponds to the

V. PROPERTIES OFPORTAL TRAVERSAL
Portal masks provide fine-grained control over the da

transfer that occurs during a portal traversal. The COr&gl fie|d of a context). ParameterizirgeldNotLeakedn this
implementation of this control mechanism is the fun.damen y allows us to write a single property that can be instantiated
property ofswitch ; there should not be any information flow;,."aoch field of the context. Figure 3 shows an example of
thf';\t i; not expressly permitt.ed by the portal masks. We divigeie such propertyEIPNotLeakedwhich specifies that HHV
this high-level requirement into three categories: does not transfer the instruction pointer register unless both the
« Destination State PreservationThe value of afield only source and destination indicate that the transfer should occur.
passes from the source domain to the destination domainrpe field-preservation properties capture information flow
if both the transfer mask and the pass mask allow the the destination through the EC, which is the only compo-
transfer. Only the source domain can leak information i@ent of the destination state that may legally change during
the destination. a traversal. We expect the remaining components of the
« Source State Preservation:No information flows into destination state—the saved context and non-SRA memory—
the source domain. The SRA of the source only changgs pe unaffected by the execution efvitch . We define
as specified by the transfer mask of the portal. DestSavedContextUnchangedexpress that the saved context
« Memory Preservation: Executing switch does not dpes not change (Figure 3), we again WéeStateEffectin
modify the memory pages or the page-table of anyjs case, the extraction function is simply the SRA-projection
domain in the system. For every domain except the sourgfction that returns the saved contesaedContext). We

and destination, the SRA pages do not change. address the memory preservation properties in Section V-C.
We will formulate these properties using the noninterference
specification patterns defined in the previous section. B. Source state preservation
A. Destination state preservation A portal traversal does not permit any information flow

Portal masks are the principal mechanism afforded to dioto the source domain. However, the source state is not
mains for protecting their state during a portal traversal. éntirely unaffected by the traversal, because HHV will po-
either the source or the destination wishes to protect a fietdntially save register values to the source SRA. In other
then HHV must ensure that the value of that field in the soureerds, executingswitch modifies the source SRA in the
EC does not leak to the destination EC. To formalize th&ame way asaveContext . We useControlledStateEffedio
property, we need a mechanism for identifying protected fieldgpress this property, as shown in FigurerégdSRA is the
and a formal way to capture that a field value is not leaked. Thtraction functionswitch is the computation of interest, and
predicatenoLeakage (see Figure 3) determines if a particulasaveContext is the reference computation.

noLeakage :: Mask — Mask — (Mask — Boo) — Bool
nolLeakage transfer pass p = not (p transfer && p pass)

FieldNotLeaked ~ (f :: Context — @, p : Mask — Bool src :: PDID, dst :: PDID, port :: Portal)
Vs. NoStateEflect (s, Xs — loadFeld (pass porl) f p (feadSRA dst s), switch src dst por)

EIPNotLeaked =

Vsre dst port noLeakage (ransfer porf) (pass porf) bEip —— Feld\otLeaked (eip, bEip src dst por)
DestSavedContextUnchanged =

Vs, srq dst port NoStateEflect (5, As — savedContext (feadSRA dst s), switch src dst port)

Fig. 3. Destination state preservation propertled?NotLeakeds an example of a field-preservation property built from the predinateeakageand the
abstract propert¥rieldNotLeakedDestSavedContextUnchangeabtures the property that a context switch does not change the destination's SRA. We quantify
over the kernel states), the source and destination domaissc(@nddst), the portal being traversegdrt).

NoFlowintoSource =
Vs, srq dst port ControlledStateEffect (s, readSRA srg, switch src dst port
saveContext (ransfer porf) (ec s) src)

Fig. 4. Source state preservation property: executing a context switch potentially modifies the saved context of the source domain, but all other components
of the source state are unchanged. The quantified variables have the same meaning as in Figure 3.

The page-table and non-SRA memory pages of the soutieited to proofs about sub-systems of L4, rather than top-
should also be preserved Bwitch , as we shall see in thelevel separation properties, due to the inherent complexities
next section. involved in reasoning about C and security issues in the L4
design. Furthermore, these projects do not employ a general
information flow framework, which we consider to be an
The only memory regions that a context switch will modifymportant contribution of our work.

are the source and destination SRAs. We capture this notioRr,, \;se of functional languages together with formal prop-

using three properties: whewitch ~ executes, the page-tableer}y specifications is a relatively recent development, but there

of eve(;y do_main re_mairr:s the samt(ej, ;he mapped memforyig already a large body of work on the subject. Elphinstone,
every domain remains the same, and t e.SRA memory OTEVel al. are using Haskell models in the the development of
domam.e?(f:ept the source and _destlna'uon remains the sa)§-4 [19], [20], a secure redesign of the L4 microkernel [18],
The definitions of thgse properties are presented in Flgure ahd are already making progress towards verifying proper-

Recall from Section IV thatreadPageTable ProJeCts yiog of this model. They have translated their model into

t,\TeS pagsf—ftabk_ahcomponent of the hkernel s_tatef. W(_a uI%%\belle/HOL, thus guaranteeing termination, but have not yet
oStateEffectvith readPageTable as the extraction function formalized any separation properties.

to express thatwitch does not modify the page-tables in the
The Programatica project formally verified a virtual memory

property PageTablesUnchanged : . "
Similarly, readPage projects a specified memory pagefrorﬂmdel written in Haskell [21]. They have also specified an

the kernel state. We quantify over all virtual-page numbers ?&(iomatic semantics for an implementation of a safe, Haskell

express that none of the memory pages visible to user-leUétFrface FO hardware [22]. We View this work as highly com-
domains are affected by a context switch. patible with ours because proving our separation properties

For the SRA memory pages, we again bieStateEffectbut will depend on guarantees about the behavior of the underlying

in this case the extraction function isadSRA. We quantify hardware.
over domain identifiers, but exclude the source and destinationT here is also existing work on the instantiation of noninter-
because the SRA of these domains might in fact change. ference frameworks for concrete systems. In his foundational
noninterference paper [1], Rushby applied noninterference to a
VI. RELATED WORK simple access control mechanism. Subsequently, Schellhorn et
OS verification has a long history filled with mixed sucal. applied Rushby’s work to prove security properties of their
cesses, an overview of which is provided by Tuch, et al. [15§eneric formal model of operating systems for multiapplicative
More recent verification efforts can be divided into twemart cards [23]. Von Oheimb used noninterference to analyze
categories: attempts to verify low-level source code written the security of the Infineon SLE66 smart card processor [13].
C/C++ and attempts to verify functional language models/ini-he key difference between our work and these earlier efforts
plementations. The VFiasco [16] and L4Verified [17] projects that the complexities of general-purpose operating systems
both pursue the former option in their effort to prove propertienake them more difficult to integrate with a theoretical frame-
of L4 [18] implementations. The results of these projects amork. Also, the access control and smart card work did not

C. Memory preservation

PageTablesUnchanged =

Vs, srq dst port did vi. NoStateEffect (s, readPageTable did vi, switch src dst porf)
UserMemoryUnchanged =
Vs, srq dst port did Vi NoStateEffect (s, readPage did vi, switch src dst por)
SRAMemoryUnchanged =
Vs, sr¢ dst port did. (did /=9src) && (did /=ds) —= NoStateEflect (s, readSRA did switch src dst porf)

Fig. 5. Properties describing the absence of information flow via memory during a context switch. As with the previous properties, we quantify over the
kernel state d), the domains involved in the portal traversaiqanddsf), and the portal being traversepoft). We introduce two new quantified variables:
did is the identifier of the domain whose memory we are interested invaigda particular page in that domain’s virtual address space.

utilize the notion of dynamic noninterference [2], which is[5] D. Grawrock, The Intel Safer Computing Initiative Intel Press, 2006.

essential for reasoning about HHV. [6] “Programatica web site,” http://programatica.cs.pdx.edu, 2006.
[7] S. Peyton Jones, Eddaskell 98 Language and Libraries, The Revised
VIl. CONCLUSIONS AND FUTURE WORK Report Cambridge University Press, 2003.

. [8] W. L. Harrison and R. B. Kieburtz, “The logic of demand in Haskell,”
In this paper, we formalized the information flow behavior J. Funct. Program.vol. 15, no. 6, pp. 837-891, 2005.

of direct communication in a microkernel-style hypervisorl®] B- Ford and J. Lepreau, “Evolving Mach 3.0 to a migrating thread
. ificati derived f | model,” in Proceedings of the Winter 1994 USENIX Technical Con-
using property-specification patterns derived from general NoNn- ference and Exhibition1994, pp. 97114,

interference frameworks. The development of these patte(ng J. S. Shapiro, “Vulnerabilities in synchronous IPC designsPiioceed-
is a significant advance in the realm of operating system ings of the 2003 IEEE Symposium on Security and Privitgy 2003,

o . I . . pp. 251-262.
verification because it illustrates how to apply information flowi 1} m. p. jones, “Functional programming with overloading and higher-

theory to a practical system. order polymorphism,” inAdvanced Functional Programming, 1st Int.
The next step is to port our model to a theorem proving Spring School on Advanced Functional Programming Techniques-

. Tutorial Text London, UK: Springer-Verlag, 1995, pp. 97-136.
environment, such as Isabelle/HOL, and to prove the propy) s Liang, P. Hudak, and M. Jones, “Monad transformers and modular

erties specified in this paper. We anticipate that the use of interpreters,” inPOPL '95: Proc. 22nd ACM Symp. on Principles of
Haskell will make this task easier because Haskell has a Programming languagesl995, pp. 333-343.

Il-defined . d th blished [)13]5 D. von Oheimb, “Information flow control revisited: Noninfluence =
well-defined semantics and there are established connection Noninterference + Nonleakage,” ®omputer Security — ESORICS 2004

between Haskell and Isabelle. We also plan to formalize the ser. LNCS, vol. 3193. Springer, 2004, pp. 225-243. _
information flow behavior of the remaining primitives of HHVI[14] J. Goguen and J. Meseguer, “Security policies and security models,” in

. h hni lied . IEEE Symposium on Security and Priva@®82, pp. 11-20.
using the same techniques we applied to communication. [15] H. Tuch, G. Klein, and G. Heiser, “OS verification — now!” in

We based the correctness and security properties of our Proc. 10th Workshop on Hot Topics in Operating Systems (HotQS X)
hypervisor on a Haskell model, rather than a low-level impITi M. Seltzer, Ed., 2005.

tati that Id f th tual el i@ M. Hohmuth, H. Tews, and S. G. Stephens, “Applying source-code veri-
mentation, so that we could 1ocus on the conceptual eleme fication to a microkernel — The VFiasco project,” Technische Univarsit

of our design. Our model is based on the same specification as Dresden, Tech. Rep. TUD-FI02-03, March 2002.

the actual C++ Implementationi but we have yet to estab“é]ﬁ] H. Tuch and G. Klein, “Verlfylng the L4 virtual memory SUbSyStem," in
f | . b h Ideall Id lik Proc. NICTA Formal Methods Workshop on Operating Systems Verifi-
a tormal connection between the two. ldeally, we would liké c4tion G. Klein, Ed., NICTA Technical Report 0401005T-1. National

to derive the model directly from the implementation or refine ICT Australia, 2004, pp. 73-97.
the model into an implementation. However, our immedialé8] L4ka Team,L4 eXperimental Kernel Reference Manuaénuary 2005.

e e . [Online]. Available: http://l4hg.org/docs/manuals/I4-x2-20041209.pdf
plans focus on the specification and verification of the criticlg) k Ejphinstone, G. Klein, and R. Kolanski, “Formalising a_high-

components using the model alone. performance microkernel,” iVorkshop on Verified Software: Theories,
Tools, and Experiments (VSTTE P6gr. Microsoft Research Technical
ACKNOWLEDGMENTS Report MSR-TR-2006-117, R. Leino, Ed., Seattle, USA, 2006, pp. 1-7.

. , N o .[20] P. Derrin, K. Elphinstone, G. Klein, D. Cock, and M. M. T. Chakravarty,
Sebastian Sdinberg made significant contributions to thig “Running the manual: an approach to high-assurance microkernel de-

work by sharing his expertise in hypervisor design and im- velopment,” inHaskell '06: Proceedings of the 2006 ACM SIGPLAN
plementation. We would also like to thank Mark P. Jones and _ Workshop on Haskell New York, NY, USA: ACM Press, 2006.

| S. Diatchki for their helpful ti di th 21] M. P. Jones, “Bare Metal: A Programatica model of hardwareMigh
avor o. - 1atchki] or their e_p ul suggestions reQ?r ing _ Confidence Software and Systems ConfereBedtimore, MD, March
presentation of this paper. This work was done during the first 2005.

author’s internship at Intel Research Labs. [22] T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach, “A principled
approach to operating system construction in Haskell,IGFP ’05:
REFERENCES Proceedings of the tenth ACM SIGPLAN international conference on

Functional programming New York, NY, USA: ACM Press, 2005.
[1] J. Rushby, “Noninterference, transitivity, and channel-control securif23] G. Schellhorn, W. Reif, A. Schairer, P. A. Karger, V. Austel, and D. Toll,

policies,” SRI International, Tech. Rep. CSL-92-02, December 1992. “Verification of a formal security model for multiapplicative smart
[2] R. Leslie, “Dynamic intransitive noninterference,” First IEEE Inter- cards,” iInESORICS '00: Proceedings of the 6th European Symposium on
national Symposium on Secure Software Enginee20§6. Research in Computer SecurityLondon, UK: Springer-Verlag, 2000,
[3] “seL4 web site,” http://lwww.ertos.nicta.com.au/research/sel4. pp. 17-36.

[4] B. Kauer, “L4.sec implementation: Kernel memory management,”
Diploma Thesis, TU Dresden, 2005.

